Asymptotically exact local discontinuous Galerkin error estimates for the linearized Korteweg-de Vries equation in one space dimension
نویسنده
چکیده
Abstract. We present and analyze a posteriori error estimates for the local discontinuous Galerkin (LDG) method for the linearized Korteweg-de Vries (KdV) equation in one space dimension. These estimates are computationally simple and are obtained by solving a local steady problem with no boundary condition on each element. We extend the work of Hufford and Xing [J. Comput. Appl. Math., 255 (2014), pp. 441-455] to prove new superconvergence results towards particular projections of the exact solutions for the two auxiliary variables in the LDG method that approximate the first and second derivatives of the solution. The order of convergence is proved to be k + 3/2, when polynomials of total degree not exceeding k are used. These results allow us to prove that the significant parts of the spatial discretization errors for the LDG solution and its spatial derivatives (up to second order) are proportional to (k + 1)-degree Radau polynomials. We use these results to construct asymptotically exact a posteriori error estimates and prove that, for smooth solutions, these a posteriori LDG error estimates for the solution and its spatial derivatives, at a fixed time t, converge to the true errors at O(hk+3/2) rate in the L-norm. Finally, we prove that the global effectivity indices, for the solution and its spatial derivatives, converge to unity at O(h1/2) rate. Numerical results are presented to validate the theory.
منابع مشابه
A Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملA Posteriori Error Estimates for Conservative Local Discontinuous Galerkin Methods for the Generalized Korteweg-de Vries Equation
We construct and analyze conservative local discontinuous Galerkin (LDG) methods for the Generalized Korteweg-de-Vries equation. LDGmethods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives. The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuo...
متن کاملNew analytical soliton type solutions for double layers structure model of extended KdV equation
In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...
متن کاملNumerical studies of the stochastic Korteweg-de Vries equation
We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space. The accuracy of the stochastic solutions...
متن کاملConservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation
Abstract. We construct, analyze and numerically validate a class of conservative, discontinuous Galerkin schemes for the Generalized Korteweg-de Vries equation. Up to round-off error, these schemes preserve discrete versions of the first two invariants (the integral of the solution, usually identified with the mass, and the L–norm) of the continuous solution. Numerical evidence is provided indi...
متن کامل